Defining naphtha is very difficult, so complicated and hard to understand (for me). Maybe I should learn more about chemistry. Based on sources that I get from wikipedia, the definition simply naphtha is as follows.
|
Naphtha Fluid |
Naphtha is obtained in petroleum refineries as one of the intermediate products from the distillation of crude oil. It is a liquid intermediate between the light gases in the crude oil and the heavier liquid kerosene. Naphthas are volatile, flammable and have a specific gravity of about 0.7. The generic name 'naphtha' describes a range of different refinery intermediate products used in different applications.
To complicate the matter further, similar naphtha types are often referred to by different names.
Naphtha is used primarily as feedstock for producing high octane gasoline (via the
catalytic reforming process). It is also used in the petrochemical industry for producing olefins in steam crackers and in the chemical industry for solvent (cleaning) applications. Common products made with it include lighter fluid, fuel for camp stoves, and some cleaning solvents
|
Lighter Fluid and Gas in the market (Naphtha and Butane Lighter Fluid) |
Petrochemicals are chemical products derived from petroleum. Some chemical compounds made from petroleum are also obtained from other fossil fuels such as coal or natural gas, or renewable sources such as corn or sugar cane.
Two petrochemical classes are olefins including ethylene and propylene, and aromatics including benzene, toluene and xylene isomers. Oil refineries produce olefins and aromatics by fluid catalytic cracking of petroleum fractions. Chemical plants produce olefins by steam cracking of natural gas liquids like ethane and propane. Aromatics are produced by catalytic reforming of naphtha. Olefins and aromatics are the building blocks for a wide range of materials such as solvents, detergents, and adhesives. Olefins are the basis for polymers and oligomers used in plastics, resins, fibers, elastomers, lubricants, and gels.
Primary petrochemicals are divided into three groups depending on their chemical structure:
- Olefins includes ethylene, propylene, and butadiene. Ethylene and propylene are important sources of industrial chemicals and plastics products. Butadiene is used in making synthetic rubber.
- Aromatics includes benzene, toluene, and xylenes. Benzene is a raw material for dyes and synthetic detergents, and benzene and toluene for isocyanates MDI and TDI used in making polyurethanes. Manufacturers use xylenes are used to produce plastics and synthetic fibers.
- Synthesis gas is a mixture of carbon monoxide and hydrogen used to make ammonia and methanol. Ammonia is used to make the fertilizer urea and methanol is used as a solvent and chemical intermediate.